Computer Architecture
PhD Qualifying Exam
Review Session

November, 2017
Quincy FLINT

REVISEB"PRINTING

COMPUTER

ORGANIZATION COMPUTER

Resources

* Textbooks
* Computer Organization and Design — Patterson, Hennessy
* Computer Architecture — A Quantitative Approach — Patterson, Hennessy

 UF Past Practice Exams
* https://www.ece.ufl.edu/content/phd-written-qualifying-exam-questions

 UF Exam Study Guide
e https://www.ece.ufl.edu/sites/default/files/pictures/ComputerOrganization.pdf

* Exam Registration
* https://gradadmissions.ece.ufl.edu/srs-servliet/examRegistration/phd

https://www.ece.ufl.edu/content/phd-written-qualifying-exam-questions
https://www.ece.ufl.edu/sites/default/files/pictures/ComputerOrganization.pdf
https://gradadmissions.ece.ufl.edu/srs-servlet/examRegistration/phd

Important Dates

* 12/01/2017 — Qualifying exam registration closes (Friday, 5 pm)
¢ 12/??/2017 — Potential 2" review session
* 01/??/2018 — Final review session

* 01/20/2018 — Qualifying exam (Saturday, time TBD)

Boolean Algebra

 Algebra with 0’s and 1’s * Idempotent Laws
* X+0=X * X+X=X
* X+1=1 « X *X=X
* X*1=X * Complement Laws
« X+ /X=1
* X*0=0

e X*/X=0

Boolean Algebra

* Dual: * DeMorgan’s Laws
e1 >0 * NOT(X+Y+Z) = NOT(X) * NOT(Y) * NOT(2)
* + DX

« NOT(X*Y*Z) = NOT(X) + NOT(Y) + NOT(2)

X+0=X 2Xx1=X
* Consensus Theorem
X+1=1-2>X*0=0 e XY +YZ+\XZ=XY+\XZ
Proof - example
X+/X=1=2>X*/X=0

Number Systems

e Base 10: 541 =5x10? + 4x10' + 1x10°
=5x100 + 4x10 + I1x1

e Base 2: 0101 = 0x2" + 1x22 + 0Ox21 + 1x2°
=x8 +1x4 +0x2 + 1x1

Conversion between systems

* Decimal to Binary
1. Brute Force -- “Count it out”
2. Divide by 2 — remainder becomes binary (least to most significant)

* Decimal to Hex
1. Convert to Binary then groups of 4 bits
2. Divide by 16 -- remainder becomes hex (least to most significant)

* Decimal to Octal
1. Convert to Binary then groups of 3 bits
2. Divide by 8 -- remainder becomes octal (least to most significant)

Boolean Arithmetic

 Think back to basic arithmetic in base 10

* Let’s just do some problems

Sighed Number Representations

* Signhed Magnitude:
* MSB gives sign
10000101 =-5
* 1’s Complement:
* if MSB is 1 — flip bits and apply minus sign
* |If MSB is 0 — do nothing, positive
e 1111 1100 (flipped = 0000 0011) =-3

e 2’s Complement:
* if MSB is 1 — flip bits, add 1, and apply minus sign
e 1111 1101 (flipped + 1 = 0000 0011) =-3

Alternate 2’s Complement Solution

e 2’'s Complement: e 2’'s Complement:
*1011 *1011
1. Flip Bits: 0100 ‘ ‘ ‘
2.Add 1: 0101 8 4+ 241 =5

3. Interpret: -5

Floating Point Numbers

* Single Precision FP Number = (-1)° * (1 + M) * 2
* [31][30... 23][22 ... O]
e Bias () =2%1-1=127

Single Precision Floating Point

M

) DOUble PrECISion Sign Exp’nt Mantissa
e [63][62 ... 52][51 ... 0] 1 (8 (23)
* Bias () =211-1=1028

Double Precision Floating Point

M

* Ex: 0xCOCO 0000 to decimal | - R
 Q: Precision and Range? W

Floating Point Arithmetic

* Steps to perform FP addition
1. Align radix

* Calculate difference in exponent D = X, - X_

* Choose same exponent, X_ =X,

* Align mantissa, shift “hidden bit” into M_ by D [de-normalize]
2. Perform operation

* Keep same exponent

* Add mantissa fields

3. Re-Normalize

* Example: add 3E80 000 to 42C8 0000

Cache Basics

* Associativity:
* 1-way [Direct Mapped]
* N-way Set-Associative
* All-the-way [Fully Associative]

* Finding a block in cache:

e Cache index = Ram Block Address
mod Number Sets in Cache

Direct Mapped Set Associative
Block# 01234567 Set# 0 1 2 3

Fully Associative

Data Data

I =

Tag 1 Tag 3 Tag

seuch [| st [TTTTTTT

Turquoise = entire set
Blue = selected block
Arrow = block placement

Search T

Direct Mapped Cache

RAM Size = M (Bytes)
Bits to address RAM =m = M log 2
RAM addresses = 2™

Cache Size = K (Bytes)
Bits to address cache =k = Klog 2
Cache addresses = 2k

(RAM) Block Size = N (Blocks)
Bits to address blocks in cache =n =N log 2
Memory block in cache line = 2"

(RAM) Blocks = 2m/2n = 2m-n

Example: 16-Byte RAM, 4-Byte Cache
(Direct Mapped), 1-Byte Memory Blocks

Memory
Address

T hR N RNADVOONOUAWN=SO

RAM
(Memory)

Direct Mapped Cache + 2-Byte Blocks

Example: 16-Byte RAM, 4-Byte Cache

e RAM Size = N = 16 (Bytes) (Direct Mapped), 2-Byte Memory Blocks

 # Bits to address RAM =n= 4

Byte Block
Address Address

0

e Cache Size = M = 4 (Bytes)
e # Bits to address cache=m= 2

* (RAM) Block Size = K = 2 (blocks)
* # Bits to address blocks in cache=n=1

ol o e =N S
P RO NS VNG U A WNS
~ (o) (8] N w N -

* ## (RAM) Blocks =241=23=8

(Memory)

M-Bit Address

* Offset = rem(block number / block size)

* Index = (memory set number) mod (cache size)
= lowest k bits of block set address

* Tag = most significant bits of block set address not used by index
m-k-n bits k bits n bits
Tag Cache Set Block

(MSB of Block Address) Index Offset

Virtual Memory

* VM solves 3 problems:
* Not enough physical RAM
* Data Fragmentation
* Programs overwriting memory

* Virtual Memory...
e Uses the hard drive like another layer of memory abstraction
* Maps virtual addresses to physical addresses (*)

Virtual Memory Continued...

* |SA determines virtual address space (MIPS => 232 bits)
* Physical Address space based on RAM

* Page Fault: when page table entry not in RAM we must fetch it
 Dirty Bit: VM does not write-through, instead dirty bit is set on writes

* How long does a page fault take?

Page Tables, Address Translation, TLB

74

Example translation (TBL hit)

Virtual Address Virtual page number Page offset
0x00003208 | 0x00003 “ox208 °

1. PTE isin the

Memory
(big & slow)

DISK
0x0003
0x0004
0x0006
0x0008
0x0009

AX00003 0x0006

0x00f6

Physical Address o 2 0x208 °

Physical page number Page offset

/5%

MIPS Instruction Set

* 32 bit (4 Byte) instructions
3 basic instruction types

O bits 5 bits 5 bits 5 bits 5 bits G bits
op rs rt rd shamt funct
op rs rt address / immediate
op target address

op: basic operation of the instruction {opcode)

rs: first source operand register

ri: second source operand register

rd: destination operand register

shamt: shift amount

funct: selects the specific variant of the opcode (function code)
address: offset for load/store instructions {+/-2'%)

immediate: constants for immediate instructions

add

Example

MIPS assembly language

Meaning

| 3 operands; exception possible

\ “add $1,$2.$3 | $1=$2+$3
subtract sub $1,$2,$3 | $1=$2-$3 | 3 operands: exception possible
add immediate addi $1,$2,100 | $1=$2 + 100 + constant; exception possible
add unsigned addu $1,$2,$3 | $1 =952 + $3 3 operands; no exceptions
subtract unsigned |subu $1,$2,$3 | $1=$2-$3 3 operands; no exceptions
add imm. unsign. | addiu $1,$2,100| $1 = $2 + 100 + constant; no exceptions
Arithmetic | Move fr. copr. reg. | mfcO $1,$epc $1 = $epc Used to get exception PC
| multiply mult $2,$3 Hi, Lo = $2 ¥ $3 64-bit signed product in Hi, Lo
| muttiply unsigned | multu $2,$3 Hi, Lo = $2 ¥ $3 64-bit unsigned product in Hi, Lo
divide div $2,$3 Lo=$2 < $3, Hi = $2 mod $3 | Lo = quotient, Hi = remainder
divide unsigned | divu $2,$3 Lo = $2 + $3, Hi = $2 mod $3 | Unsigned quotient and remainder
' Move from Hi mfhi $1 $1 = Hi Used to get copy of Hi
Move from Lo mflo $1 $1=Lo Use to get copy of Lo
and and $1,$2,$3 $1=9%2& %3 3 register operands; logical AND
‘ or or $1,$2,$3 $1=$2183 3 register operands; logical OR
Leggial and immediate andi $1,$2,100 | $1=$2 & 100 Logical AND register, constant
or immediate ori $1,$2,100 $1=%$21100 | Logical OR register, constant
shift left logical | sll $1,$2,10 $1=%$2<<10 | Shift left by constant
shift right logical | srl $1,$2,10 $1=9%2>>10 | Shift right by constant
load word Iw $1,100($2) $1 = Memory [$2+100] Data from memory to register
traD:;?er store word sw $1,100($2) Memory_[$2+100] =$1 Data from register to memory
load upper imm. lui $1,100 $1=100x 2% Loads constant in upper 16 bits
branch on equal | beg $1,$2,100 | if ($1 == $2) go to PC+4+100 | Equal test; PC relative branch
branch on not eq. |bne $1,$2,100 | if ($1!= $2) go to PC+4+100 Not equal test; PC relative
Conditional | set on less than sit ':$1.$2,$3 if ($2 < $3) $1=1; else $1=0 | Compare less than; 2's complement
branch set less than imm. | siti $1,$2,100 if ($2 < 100) $1=1; else $1=0 | Compare < constant; 2's comp.
set less than uns. | situ $1,$2,$3 if ($2 < $3) $1=1; else $1=0 | Compare less than; natural number
set I.t. imm. uns. |sitiu $1,$2,100 | if ($2 < 100) $1=1; else $1=0 | Compare < constant; natural
3 jump j 10000 go to 10000 Jump to target address
Unc?lr::::gonal jump register jr $§1 go to $31 | For switch, procedure return
jump and link jal 10000 | $31 =PC + 4, go to 10000 For procedure call

Addressing Modes [MIPS]

Register Addressing (direct)
 add $tO, St1, St2
» PC<=RJ[s] (program counter gets contents of register s)

Base Addressing (indirect)
* Load and Store instructions
* |w Srt, offset_value(Srs)
 ADDR <=R[s] + sign_extend(offset_value)

Immediate Addressing
e addi St1, St0, immediate
* PC<=R[s] + immediate

PC-Relative Addressing (branch instructions)

* |-type instructions
¢ PC<=PC+sign_extend(SLL(IR;5, , 2))

If-Else Loop MIPS

Pseudocode: # Assembly Equivalent

if (@a<b+3) addi $t2, St1, 3 #tmp=b+3
a=a+1 blt StO, St2, THEN # if (a < tmp)

else addi StO, StO0, 2 # (else case) a=a+2
a=a+2 JEND
b=b+a THEN: addi S$tO, St0, 1 # (then case) a=a+1

Register mappings: END: add St1,St1,St0 #b=b+a

a: St0, b: St1

MIPS Datapath

5 stage pipeline example 5 Steps of MIPS Datapath

o Figure 3.1, Page 130, CA:AQA 2e :
FetCh) Read/d.eCOde’ ALU’ Instruction i Instr. Decode i Execute Memory | Write
Memory (Opt|ona|)’ Write Fetch Reg. Fetch Addr. Cale : Access | Back

Next PC : H :

i Next SEQPC

B

1

» % . : : : :
LA CMPUT 429 - Computer Sysfems and Architectufe i 8

Data Dependencies (and Hazards)
* RAW [Flow, True] Dependency

* WAW [Output, False] Dependency

* WAR [Anti-, False] Dependency

. A property of the program
. A property of the pipeline

* Occurs when dependence causes incorrect execution

|[dentifying Dependencies

 Example: identify dependencies in following code
ADD R1, R2, R3
SUB R7, R1, R8
MUL R1, R5, R6

: We must flush pipeline
: We can stall pipeline or forward instructions

Amdahl’s Law

1
)_|_Fraction

* Amdahl’s Law: Speedup, ., =

(1—FTaCti0n enhanced/Speedup

enhanced
enhanced

 Fraction,,,.....q S “the fraction of the computation time in the original computer that can
be converted to take advantage of the enhancement” (<= 1)

* Speedup,,panceq 1S “the improvement gained by the enhanced execution mode — how much
faster the task would run if the enhanced mode were used for the entire program” (> 1)

* Example: Patterson Hennessy Problem

PH Chapter 1 — Problem 17

1.17

[10/10/20/20] <1.10> Your company has just bought a new Intel Core i5 dual-
core processor, and you have been tasked with optimizing your software for this
processor. You will run two applications on this dual core, but the resource
requirements are not equal. The first application requires 80% of the resources,
and the other only 20% of the resources. Assume that when you parallelize a por-
tion of the program. the speedup for that portion is 2.

a. [10] <1.10> Given that 40% of the first application is parallelizable, how
much speedup would you achieve with that application if run in isolation?

b. [10] <1.10> Given that 99% of the second application is parallelizable, how
much speedup would this application observe if run in isolation?

¢. [20] <1.10> Given that 40% of the first application is parallelizable, how
much overall system speedup would you observe if you parallelized it?

d. [20] <1.10> Given that 99% of the second application is parallelizable, how
much overall system speedup would you observe if you parallelized it?

PH Chapter 2 — Problem 19

2:19

[15] <2.3> Whenever a computer is idle, we can either put it in stand by (where
DRAM is still active) or we can let it hibernate. Assume that, to hibernate, we
have to copy just the contents of DRAM to a nonvolatile medium such as Flash.
It reading or writing a cacheline of size 64 bytes to Flash requires 2.56 ulJ and
DRAM requires 0.5 nJ, and if idle power consumption for DRAM is 1.6 W (for
8 GB), how long should a system be idle to benefit| from hibernating? Assume a
main memory of size 8 GB.

PH Chapter 2 — Problem 19

2.8 [12/12/15] <2.2> The following questions investigate the impact of small and H
simple caches using CACTI and assume a 65 nm (0.065 pm) technology. Pf@VIOUSly CaICUIatEd for (a)

(CACTT is available in an online form at http://quid.hpl.hp.com:9081/cacti/.)
c. [15] <2.2> For a 64 KB cache, find the cache associativity between 1 and 8 ASSOCIatIVlty ACCESS Tlme cyCIE Tlme

with the lowest average memory access time given that misses per instruction

for a certain workload suite is 0.00664 for direct mapped, 0.00366 for two- 1'Way 0.863 ns 0.504 ns
way set associative, 0.000987 for four-way set associative, and 0.000266 for
eight-way set associative cache. Overall, there are (0.3 data references per Z'Way 1.121 ns 0.509 ns
instruction. Assume cache misses take 10 ns in all models. To calculate the
hit time in cycles, assume the cycle time output using CACTI, which corre- 4-Way 1371 ns 0829 NS
sponds to the maximum frequency a cache can operate without any bubbles
in the pipeline. 8-Way 2.035 ns 0.790 ns
Equations:

Avg. Access Time = (Hit% x Hit Time) + (Miss% x Miss Penalty)
Hit Time = Access Time / Cycle Time [Cycles]

Miss % = Misses per Instruction / References per Instruction
Hit % =1 -Miss %

Miss Penalty = Cache Miss Time / Cycle Time [Cycles]

