
Virtual Memory
EEL 3713C: Digital Computer Architecture

Quincy Flint
[Ionospheric Radio Lab in NEB]

Quincy Flint

Outline

1. Memory Problems
• Not enough memory

• Holes in address space

• Programs overwriting

2. What is Virtual Memory?
• Layer of indirection

• How does indirection solve above

• Page tables and translation

3. How do we implement VM?
• Create and store page tables

• Fast address translation

4. Virtual Memory and Caches
• Prevent cache performance

degradation when using VM

Quincy Flint

Page Faults

Quincy Flint

Page Faults

• A Page Fault occurs when we must access the disk to fetch data
because it is not stored in memory.

Quincy Flint

What happens if a page is not in memory?

Q: How do we know when a page is not in memory?
• No mapped entry in Page Table
• Page Table points to disk
• The Virtual Address is larger than the Physical

Address Space

Quincy Flint

What happens if a page is not in memory?

Q: How do we know when a page is not in memory?
• No mapped entry in Page Table
• Page Table points to disk
• The Virtual Address is larger than the Physical

Address Space

A: Page Table points to disk

Quincy Flint

What happens if a page is not in memory?Quincy Flint

What happens if a page is not in memory?

• If a page is not in memory, Page Table Entry says it is on disk.

Quincy Flint

What happens if a page is not in memory?

• If a page is not in memory, Page Table Entry says it is on disk.

• Hardware generates a Page Fault Exception

Quincy Flint

What happens if a page is not in memory?

• If a page is not in memory, Page Table Entry says it is on disk.

• Hardware generates a Page Fault Exception
• Hardware passes control to O/S page fault handler

Quincy Flint

What happens if a page is not in memory?

• If a page is not in memory, Page Table Entry says it is on disk.

• Hardware generates a Page Fault Exception
• Hardware passes control to O/S page fault handler

1. The O/S chooses a page to replace in memory

Quincy Flint

What happens if a page is not in memory?

• If a page is not in memory, Page Table Entry says it is on disk.

• Hardware generates a Page Fault Exception
• Hardware passes control to O/S page fault handler

1. The O/S chooses a page to replace in memory

2. If the old page is “dirty”, write it to disk (if clean, we can overwrite)

Quincy Flint

What happens if a page is not in memory?

• If a page is not in memory, Page Table Entry says it is on disk.

• Hardware generates a Page Fault Exception
• Hardware passes control to O/S page fault handler

1. The O/S chooses a page to replace in memory

2. If the old page is “dirty”, write it to disk (if clean, we can overwrite)

3. Update Page Table Entry for old page to reference disk

Quincy Flint

What happens if a page is not in memory?

• If a page is not in memory, Page Table Entry says it is on disk.

• Hardware generates a Page Fault Exception
• Hardware passes control to O/S page fault handler

1. The O/S chooses a page to replace in memory

2. If the old page is “dirty”, write it to disk (if clean, we can overwrite)

3. Update Page Table Entry for old page to reference disk

4. Bring in new page from disk to memory

Quincy Flint

What happens if a page is not in memory?

• If a page is not in memory, Page Table Entry says it is on disk.

• Hardware generates a Page Fault Exception
• Hardware passes control to O/S page fault handler

1. The O/S chooses a page to replace in memory

2. If the old page is “dirty”, write it to disk (if clean, we can overwrite)

3. Update Page Table Entry for old page to reference disk

4. Bring in new page from disk to memory

5. Update Page Table Entry for new page

Quincy Flint

What happens if a page is not in memory?

• If a page is not in memory, Page Table Entry says it is on disk.

• Hardware generates a Page Fault Exception
• Hardware passes control to O/S page fault handler

1. The O/S chooses a page to replace in memory

2. If the old page is “dirty”, write it to disk (if clean, we can overwrite)

3. Update Page Table Entry for old page to reference disk

4. Bring in new page from disk to memory

5. Update Page Table Entry for new page

6. Return control to faulting instruction

Quincy Flint

What happens if a page is not in memory?

• If a page is not in memory, Page Table Entry says it is on disk.

• Hardware generates a Page Fault Exception
• Hardware passes control to O/S page fault handler

1. The O/S chooses a page to replace in memory

2. If the old page is “dirty”, write it to disk (if clean, we can overwrite)

3. Update Page Table Entry for old page to reference disk

4. Bring in new page from disk to memory

5. Update Page Table Entry for new page

6. Return control to faulting instruction

• Architected hardware can also handle page faults

Quincy Flint

What happens if a page is not in memory?

• If a page is not in memory, Page Table Entry says it is on disk.

• Hardware generates a Page Fault Exception
• Hardware passes control to O/S page fault handler

1. The O/S chooses a page to replace in memory

2. If the old page is “dirty”, write it to disk (if clean, we can overwrite)

3. Update Page Table Entry for old page to reference disk

4. Bring in new page from disk to memory

5. Update Page Table Entry for new page

6. Return control to faulting instruction

• Architected hardware can also handle page faults

Dirty Page: a page is “dirty” if it has been
written to since it has been in the cache.

Dirty pages must be written back to disk
before being evicted from memory.

A bit is set in the PT to flag dirty pages.

Quincy Flint

What happens if a page is not in memory?

• If a page is not in memory, Page Table Entry says it is on disk.

• Hardware generates a Page Fault Exception
• Hardware passes control to O/S page fault handler

1. The O/S chooses a page to replace in memory

2. If the old page is “dirty”, write it to disk (if clean, we can overwrite)

3. Update Page Table Entry for old page to reference disk

4. Bring in new page from disk to memory

5. Update Page Table Entry for new page

6. Return control to faulting instruction

• Architected hardware can also handle page faults

• This takes a long time!

Dirty Page: a page is “dirty” if it has been
written to since it has been in the cache.

Dirty pages must be written back to disk
before being evicted from memory.

A bit is set in the PT to flag dirty pages.

Quincy Flint

How long does a page fault take?

• If a page is not in memory, Page Table Entry says it is on disk.

• Hardware generates a Page Fault Exception
• Hardware passes control to O/S page fault handler

1. The O/S chooses a page to replace in memory

2. If the old page is “dirty”, write it to disk (if clean, we can overwrite)

3. Update Page Table Entry for old page to reference disk

4. Bring in new page from disk to memory

5. Update Page Table Entry for new page

6. Return control to faulting instruction

• Architected hardware can also handle page faults

• This takes a long time!

Quincy Flint

How long does a page fault take?

• If a page is not in memory, Page Table Entry says it is on disk.

• Hardware generates a Page Fault Exception
• Hardware passes control to O/S page fault handler

1. The O/S chooses a page to replace in memory

2. If the old page is “dirty”, write it to disk (if clean, we can overwrite)

3. Update Page Table Entry for old page to reference disk

4. Bring in new page from disk to memory

5. Update Page Table Entry for new page

6. Return control to faulting instruction

• Architected hardware can also handle page faults

• This takes a long time!

~1 cycle

Quincy Flint

How long does a page fault take?

• If a page is not in memory, Page Table Entry says it is on disk.

• Hardware generates a Page Fault Exception
• Hardware passes control to O/S page fault handler

1. The O/S chooses a page to replace in memory

2. If the old page is “dirty”, write it to disk (if clean, we can overwrite)

3. Update Page Table Entry for old page to reference disk

4. Bring in new page from disk to memory

5. Update Page Table Entry for new page

6. Return control to faulting instruction

• Architected hardware can also handle page faults

• This takes a long time!

~1 cycle

~100 cycles

Quincy Flint

How long does a page fault take?

• If a page is not in memory, Page Table Entry says it is on disk.

• Hardware generates a Page Fault Exception
• Hardware passes control to O/S page fault handler

1. The O/S chooses a page to replace in memory

2. If the old page is “dirty”, write it to disk (if clean, we can overwrite)

3. Update Page Table Entry for old page to reference disk

4. Bring in new page from disk to memory

5. Update Page Table Entry for new page

6. Return control to faulting instruction

• Architected hardware can also handle page faults

• This takes a long time!

~1 cycle

~100 cycles

~10,000 cycles

Quincy Flint

How long does a page fault take?

• If a page is not in memory, Page Table Entry says it is on disk.

• Hardware generates a Page Fault Exception
• Hardware passes control to O/S page fault handler

1. The O/S chooses a page to replace in memory

2. If the old page is “dirty”, write it to disk (if clean, we can overwrite)

3. Update Page Table Entry for old page to reference disk

4. Bring in new page from disk to memory

5. Update Page Table Entry for new page

6. Return control to faulting instruction

• Architected hardware can also handle page faults

• This takes a long time!

~1 cycle

~100 cycles

~10,000 cycles

~40,000,000 cycles

Quincy Flint

How long does a page fault take?

• If a page is not in memory, Page Table Entry says it is on disk.

• Hardware generates a Page Fault Exception
• Hardware passes control to O/S page fault handler

1. The O/S chooses a page to replace in memory

2. If the old page is “dirty”, write it to disk (if clean, we can overwrite)

3. Update Page Table Entry for old page to reference disk

4. Bring in new page from disk to memory

5. Update Page Table Entry for new page

6. Return control to faulting instruction

• Architected hardware can also handle page faults

• This takes a long time!

~1 cycle

~100 cycles

~10,000 cycles

~40,000,000 cycles

~1,000 cycles

Quincy Flint

How long does a page fault take?

• If a page is not in memory, Page Table Entry says it is on disk.

• Hardware generates a Page Fault Exception
• Hardware passes control to O/S page fault handler

1. The O/S chooses a page to replace in memory

2. If the old page is “dirty”, write it to disk (if clean, we can overwrite)

3. Update Page Table Entry for old page to reference disk

4. Bring in new page from disk to memory

5. Update Page Table Entry for new page

6. Return control to faulting instruction

• Architected hardware can also handle page faults

• This takes a long time!

~1 cycle

~100 cycles

~10,000 cycles

~40,000,000 cycles

~40,000,000 cycles

~1,000 cycles

Quincy Flint

How long does a page fault take?

• If a page is not in memory, Page Table Entry says it is on disk.

• Hardware generates a Page Fault Exception
• Hardware passes control to O/S page fault handler

1. The O/S chooses a page to replace in memory

2. If the old page is “dirty”, write it to disk (if clean, we can overwrite)

3. Update Page Table Entry for old page to reference disk

4. Bring in new page from disk to memory

5. Update Page Table Entry for new page

6. Return control to faulting instruction

• Architected hardware can also handle page faults

• This takes a long time!

~1 cycle

~100 cycles

~10,000 cycles

~40,000,000 cycles

~40,000,000 cycles

~1,000 cycles

~1,000 cycles

Quincy Flint

How long does a page fault take?

• If a page is not in memory, Page Table Entry says it is on disk.

• Hardware generates a Page Fault Exception
• Hardware passes control to O/S page fault handler

1. The O/S chooses a page to replace in memory

2. If the old page is “dirty”, write it to disk (if clean, we can overwrite)

3. Update Page Table Entry for old page to reference disk

4. Bring in new page from disk to memory

5. Update Page Table Entry for new page

6. Return control to faulting instruction

• Architected hardware can also handle page faults

• This takes a long time!

~1 cycle

~100 cycles

~10,000 cycles

~10,000 cycles

~40,000,000 cycles

~40,000,000 cycles

~1,000 cycles

~1,000 cycles

Quincy Flint

How long does a page fault take?

• If a page is not in memory, Page Table Entry says it is on disk.

• Hardware generates a Page Fault Exception
• Hardware passes control to O/S page fault handler

1. The O/S chooses a page to replace in memory

2. If the old page is “dirty”, write it to disk (if clean, we can overwrite)

3. Update Page Table Entry for old page to reference disk

4. Bring in new page from disk to memory

5. Update Page Table Entry for new page

6. Return control to faulting instruction

• Architected hardware can also handle page faults

• This takes a long time!

~1 cycle

~100 cycles

~10,000 cycles

~10,000 cycles

~40,000,000 cycles

~40,000,000 cycles

~1,000 cycles

~1,000 cycles

~80,000,000 cycles

Quincy Flint

How long does a page fault take?

• If a page is not in memory, Page Table Entry says it is on disk.

• Hardware generates a Page Fault Exception
• Hardware passes control to O/S page fault handler

1. The O/S chooses a page to replace in memory

2. If the old page is “dirty”, write it to disk (if clean, we can overwrite)

3. Update Page Table Entry for old page to reference disk

4. Bring in new page from disk to memory

5. Update Page Table Entry for new page

6. Return control to faulting instruction

• Architected hardware can also handle page faults

• This takes a long time!

~1 cycle

~100 cycles

~10,000 cycles

~10,000 cycles

~40,000,000 cycles

~40,000,000 cycles

~1,000 cycles

~1,000 cycles

~80,000,000 cycles ~20 ms on a 4 GHz processor

Quincy Flint

Illustration from the textbookQuincy Flint

Memory Protection

Quincy Flint

• Each program has its own Page Table. A program’s Virtual Address is
mapped to a unique Physical Address in memory.

Virtual Memory Protects Applications

Program 2
[2GB]

Program 3
[2GB]

4 GB [32-bit] RAM
Physical Address Space

Program 2
[2GB]

Program Sequence:
1. Run programs 1 and 2 [1 GB free]
2. Close program 1 [2 GB free]
3.

(Review)
Quincy Flint

• Each program has its own Page Table. A program’s Virtual Address is
mapped to a unique Physical Address in memory.

Virtual Memory Protects Applications

Program 2
[2GB]

Program 3
[2GB]

4 GB [32-bit] RAM
Physical Address Space

Program 2
[2GB]

Map 2

Program Sequence:
1. Run programs 1 and 2 [1 GB free]
2. Close program 1 [2 GB free]
3.

(Review)
Quincy Flint

• Each program has its own Page Table. A program’s Virtual Address is
mapped to a unique Physical Address in memory.

Virtual Memory Protects Applications

Program 2
[2GB]

Program 3
[2GB]

4 GB [32-bit] RAM
Physical Address Space

Program 2
[2GB]

Map 2

Map 3 Program Sequence:
1. Run programs 1 and 2 [1 GB free]
2. Close program 1 [2 GB free]
3. Run program 3

(Review)
Quincy Flint

• Each program has its own Page Table. A program’s Virtual Address is
mapped to a unique Physical Address in memory.

Virtual Memory Protects Applications

Program 2
[2GB]

Program 3
[2GB]

4 GB [32-bit] RAM
Physical Address Space

Program 2
[2GB]

Map 2

Map 3 Program Sequence:
1. Run programs 1 and 2 [1 GB free]
2. Close program 1 [2 GB free]
3. Run program 3

Program 3
[1 of 2GB]

(Review)
Quincy Flint

• Each program has its own Page Table. A program’s Virtual Address is
mapped to a unique Physical Address in memory.

Virtual Memory Protects Applications

Program 2
[2GB]

Program 3
[2GB]

4 GB [32-bit] RAM
Physical Address Space

Program 2
[2GB]

Map 2

Map 3 Program Sequence:
1. Run programs 1 and 2 [1 GB free]
2. Close program 1 [2 GB free]
3. Run program 3 [CAN DO!]

Program 3
[1 of 2GB]

Program 3
[1 of 2GB]

(Review)
Quincy Flint

Linux Virtual Address Space

• Consider a 32-bit address space

Virtual Address Space
4GB [32-bit]

0xFFFF FFFF

0x0000 0000

Quincy Flint

Linux Virtual Address Space

• Consider a 32-bit address space

• The Linux Address Space -->

Virtual Address Space
4GB [32-bit]

0x0000 0000

0xFFFF FFFF

Quincy Flint

Linux Virtual Address Space

• Consider a 32-bit address space

• The Linux Address Space -->

O/S Kernel

0xFFFF FFFF

0xCFFF FFFF

Virtual Address Space
4GB [32-bit]

1 GB reserved for
Linux kernel, users
cannot access

0x0000 0000

Quincy Flint

Linux Virtual Address Space

• Consider a 32-bit address space

• The Linux Address Space -->
Stack

O/S Kernel

0xFFFF FFFF

0xCFFF FFFF

Virtual Address Space
4GB [32-bit]

1 GB reserved for
Linux kernel, users
cannot access

The stack grows
down to a max size

0x0000 0000

Quincy Flint

Linux Virtual Address Space

• Consider a 32-bit address space

• The Linux Address Space -->
Stack

O/S Kernel

0xFFFF FFFF

0xCFFF FFFF

Virtual Address Space
4GB [32-bit]

1 GB reserved for
Linux kernel, users
cannot access

The stack grows
down to a max size

LibrariesShared Library

0x0000 0000

Quincy Flint

Linux Virtual Address Space

• Consider a 32-bit address space

• The Linux Address Space -->
Stack

O/S Kernel

0xFFFF FFFF

0xCFFF FFFF

Virtual Address Space
4GB [32-bit]

1 GB reserved for
Linux kernel, users
cannot access

The stack grows
down to a max size

Libraries

Heap
The heap grows up

Shared Library

0x0000 0000

Quincy Flint

Linux Virtual Address Space

• Consider a 32-bit address space

• The Linux Address Space -->
Stack

O/S Kernel

0x0000 0000

0xFFFF FFFF

0xCFFF FFFF

Virtual Address Space
4GB [32-bit]

1 GB reserved for
Linux kernel, users
cannot access

The stack grows
down to a max size

Libraries

Heap
The heap grows up

Shared Library

Data

Text

Data section stores
static variables.
Text section stores
your code.

Quincy Flint

Linux Virtual Address Space

• Consider a 32-bit address space

• The Linux Address Space -->
Stack

O/S Kernel

0x0000 0000

0xFFFF FFFF

0xCFFF FFFF

Virtual Address Space
4GB [32-bit]

1 GB reserved for
Linux kernel, users
cannot access

The stack grows
down to a max size

Libraries

Heap
The heap grows up

Shared Library

Data

Text

Data section stores
static variables.
Text section stores
your code.

128 MB for I/O

Quincy Flint

Linux Virtual Address Space

• Consider a 32-bit address space

• The Linux Address Space -->

• Random offsets for security
• Never know where code is…

Stack

O/S Kernel

0x0000 0000

0xFFFF FFFF

0xCFFF FFFF

Virtual Address Space
4GB [32-bit]

1 GB reserved for
Linux kernel, users
cannot access

The stack grows
down to a max size

Libraries

Heap
The heap grows up

Shared Library

Data

Text

Data section stores
static variables.
Text section stores
your code.

128 MB for I/O

}

}

}

???

???

???

Quincy Flint

Linux Virtual Address Space

Program 1
Virtual Address Space

Program 1
Virtual Address Space

Physical Address Space

Quincy Flint

Linux Virtual Address Space

Program 1
Virtual Address Space

Program 1
Virtual Address Space

Physical Address Space

O/S Kernel

Quincy Flint

Linux Virtual Address Space

Program 1
Virtual Address Space

Program 1
Virtual Address Space

Physical Address Space

O/S Kernel
Kernel shared by
all applications

Quincy Flint

Linux Virtual Address Space

Program 1
Virtual Address Space

Program 1
Virtual Address Space

Physical Address Space

O/S Kernel

Stack

Kernel shared by
all applications

Libraries

Quincy Flint

Linux Virtual Address Space

Program 1
Virtual Address Space

Program 1
Virtual Address Space

Physical Address Space

O/S Kernel

Stack

Heap

Kernel shared by
all applications

Libraries

Quincy Flint

Linux Virtual Address Space

Program 1
Virtual Address Space

Program 1
Virtual Address Space

Physical Address Space

O/S Kernel

Stack

Heap

Kernel shared by
all applications

Library shared by
application 1 & 2Libraries

Quincy Flint

Linux Virtual Address Space

Program 1
Virtual Address Space

Program 1
Virtual Address Space

Physical Address Space

O/S Kernel

Stack

Heap

Libraries

Kernel shared by
all applications

Library shared by
application 1 & 2

Library exclusive to
application 2

Libraries

Quincy Flint

Linux Virtual Address Space

Program 1
Virtual Address Space

Program 1
Virtual Address Space

Physical Address Space

O/S Kernel

Stack

Heap

Libraries

Kernel shared by
all applications

Library shared by
application 1 & 2

Library exclusive to
application 2

Page Table mappings keep
programs isolated….
BUT we can share if we
want to…

Libraries

Quincy Flint

LinuxMapping Separate Address Spaces

Program 1
VA-Space

Program 2
VA-Space

0x000F
0x000E
0x000D
0x000C
0x000B
0x000A
0x0009
0x0008
0x0007
0x0006
0x0005
0x0004
0x0003
0x0002
0x0001
0x0000

Physical Address Space

Quincy Flint

LinuxMapping Separate Address Spaces

Program 1
VA-Space

Program 2
VA-Space

0x000F
0x000E
0x000D
0x000C
0x000B
0x000A
0x0009
0x0008
0x0007
0x0006
0x0005
0x0004
0x0003
0x0002
0x0001
0x0000

Physical Address Space

LD $R2, 3($R0)

LD $R2, 3($R0)

Quincy Flint

LinuxMapping Separate Address Spaces

Program 1
VA-Space

Program 2
VA-Space

Physical Page #

0x0000

0x0001

0x0004

0x0007

……

0x000E

0x0 0000

0x0 0001

0x0 0002

0x0 0003

……

0xF FFFF

0x000F
0x000E
0x000D
0x000C
0x000B
0x000A
0x0009
0x0008
0x0007
0x0006
0x0005
0x0004
0x0003
0x0002
0x0001
0x0000

Physical Address Space

LD $R2, 3($R0)

LD $R2, 3($R0)

Quincy Flint

LinuxMapping Separate Address Spaces

Program 1
VA-Space

Program 2
VA-Space

Physical Page #

0x0000

0x0001

0x0004

0x0007

……

0x000E

0x0 0000

0x0 0001

0x0 0002

0x0 0003

……

0xF FFFF

Physical Page #

0x000A

0x0009

0x0008

0x0003

……

0x000E

0x0 0000

0x0 0001

0x0 0002

0x0 0003

……

0xF FFFF

0x000F
0x000E
0x000D
0x000C
0x000B
0x000A
0x0009
0x0008
0x0007
0x0006
0x0005
0x0004
0x0003
0x0002
0x0001
0x0000

Physical Address Space

LD $R2, 3($R0)

LD $R2, 3($R0)

Quincy Flint

LinuxMapping Separate Address Spaces

Program 1
VA-Space

Program 2
VA-Space

Physical Page #

0x0000

0x0001

0x0004

0x0007

……

0x000E

0x0 0000

0x0 0001

0x0 0002

0x0 0003

……

0xF FFFF

Physical Page #

0x000A

0x0009

0x0008

0x0003

……

0x000E

0x0 0000

0x0 0001

0x0 0002

0x0 0003

……

0xF FFFF

0x000F
0x000E
0x000D
0x000C
0x000B
0x000A
0x0009
0x0008
0x0007
0x0006
0x0005
0x0004
0x0003
0x0002
0x0001
0x0000

Physical Address Space

LD $R2, 3($R0)

LD $R2, 3($R0)

Each process gets
its own Page Table

Program 1 Page Table

Program 2 Page Table

Quincy Flint

LinuxMapping Separate Address Spaces

Program 1
VA-Space

Program 2
VA-Space

Physical Page #

0x0000

0x0001

0x0004

0x0007

……

0x000E

0x0 0000

0x0 0001

0x0 0002

0x0 0003

……

0xF FFFF

Physical Page #

0x000A

0x0009

0x0008

0x0003

……

0x000E

0x0 0000

0x0 0001

0x0 0002

0x0 0003

……

0xF FFFF

0x000F
0x000E
0x000D
0x000C
0x000B
0x000A
0x0009
0x0008
0x0007
0x0006
0x0005
0x0004
0x0003
0x0002
0x0001
0x0000

Physical Address Space

LD $R2, 3($R0)

LD $R2, 3($R0)

Each process gets
its own Page Table

Program 1 Page Table

Program 2 Page Table

Quincy Flint

LinuxMapping Separate Address Spaces

Program 1
VA-Space

Program 2
VA-Space

Physical Page #

0x0000

0x0001

0x0004

0x0007

……

0x000E

0x0 0000

0x0 0001

0x0 0002

0x0 0003

……

0xF FFFF

Physical Page #

0x000A

0x0009

0x0008

0x0003

……

0x000E

0x0 0000

0x0 0001

0x0 0002

0x0 0003

……

0xF FFFF

0x000F
0x000E
0x000D
0x000C
0x000B
0x000A
0x0009
0x0008
0x0007
0x0006
0x0005
0x0004
0x0003
0x0002
0x0001
0x0000

Physical Address Space

VA=3

LD $R2, 3($R0)

LD $R2, 3($R0)

VA=3

Each process gets
its own Page Table

Program 1 Page Table

Program 2 Page Table

Quincy Flint

LinuxMapping Separate Address Spaces

Program 1
VA-Space

Program 2
VA-Space

Physical Page #

0x0000

0x0001

0x0004

0x0007

……

0x000E

0x0 0000

0x0 0001

0x0 0002

0x0 0003

……

0xF FFFF

Physical Page #

0x000A

0x0009

0x0008

0x0003

……

0x000E

0x0 0000

0x0 0001

0x0 0002

0x0 0003

……

0xF FFFF

0x000F
0x000E
0x000D
0x000C
0x000B
0x000A
0x0009
0x0008
0x0007
0x0006
0x0005
0x0004
0x0003
0x0002
0x0001
0x0000

Physical Address Space

VA=3

LD $R2, 3($R0)

LD $R2, 3($R0)

VA=3

Each process gets
its own Page Table

Program 1 Page Table

Program 2 Page Table

Quincy Flint

LinuxMapping Separate Address Spaces

Program 1
VA-Space

Program 2
VA-Space

Physical Page #

0x0000

0x0001

0x0004

0x0007

……

0x000E

0x0 0000

0x0 0001

0x0 0002

0x0 0003

……

0xF FFFF

Physical Page #

0x000A

0x0009

0x0008

0x0003

……

0x000E

0x0 0000

0x0 0001

0x0 0002

0x0 0003

……

0xF FFFF

0x000F
0x000E
0x000D
0x000C
0x000B
0x000A
0x0009
0x0008
0x0007
0x0006
0x0005
0x0004
0x0003
0x0002
0x0001
0x0000

Physical Address Space

VA=3

LD $R2, 3($R0)

LD $R2, 3($R0)

VA=3

Each process gets
its own Page Table

Program 1 Page Table

Program 2 Page Table

Quincy Flint

LinuxMapping Separate Address Spaces

Program 1
VA-Space

Program 2
VA-Space

Physical Page #

0x0000

0x0001

0x0004

0x0007

……

0x000E

0x0 0000

0x0 0001

0x0 0002

0x0 0003

……

0xF FFFF

Physical Page #

0x000A

0x0009

0x0008

0x0003

……

0x000E

0x0 0000

0x0 0001

0x0 0002

0x0 0003

……

0xF FFFF

0x000F
0x000E
0x000D
0x000C
0x000B
0x000A
0x0009
0x0008
0x0007
0x0006
0x0005
0x0004
0x0003
0x0002
0x0001
0x0000

Physical Address Space

VA=3

LD $R2, 3($R0)

LD $R2, 3($R0)

VA=3

Each process gets
its own Page Table

Program 1 Page Table

Program 2 Page Table

Quincy Flint

LinuxMapping Separate Address Spaces

Program 1
VA-Space

Program 2
VA-Space

Physical Page #

0x0000

0x0001

0x0004

0x0007

……

0x000E

0x0 0000

0x0 0001

0x0 0002

0x0 0003

……

0xF FFFF

Physical Page #

0x000B

0x0009

0x0008

0x0003

……

0x000E

0x0 0000

0x0 0001

0x0 0002

0x0 0003

……

0xF FFFF

Program 1 Page Table

0x000F
0x000E
0x000D
0x000C
0x000B
0x000A
0x0009
0x0008
0x0007
0x0006
0x0005
0x0004
0x0003
0x0002
0x0001
0x0000

Physical Address Space

VA=3

LD $R2, 3($R0)

LD $R2, 3($R0)

VA=3

Each process gets
its own Page Table

Program 2 Page Table

Quincy Flint

Quiz: Memory Protection

Q: Which of the following Page Table
Entries can cause data corruption?
• Program 1 0x00003, Program 2 0x00003
• Program 1 0x00002, Program 2 0x00000
• Program 1 0xFFFFF, Program 2 0xFFFFF
• None of these

Physical Page #

0x0000

0x0001

0x0004

0x0007

……

0x000E

0x0 0000

0x0 0001

0x0 0002

0x0 0003

……

0xF FFFF

Physical Page #

0x0004

0x0006

0x000C

0x000D

……

0x00FF

0x0 0000

0x0 0001

0x0 0002

0x0 0003

……

0xF FFFF

Program 1 Page Table

Program 2 Page Table

Quincy Flint

Quiz: Memory Protection

Q: Which of the following Page Table
Entries can cause data corruption?
• Program 1 0x00003, Program 2 0x00003
• Program 1 0x00002, Program 2 0x00000
• Program 1 0xFFFFF, Program 2 0xFFFFF
• None of these

A: Program 1 0x00002, Program 2 0x00000.

These Virtual Addresses point to the same
Physical Address. This can cause data
corruption if care is not taken. These programs
can safely share data, however.

Physical Page #

0x0000

0x0001

0x0004

0x0007

……

0x000E

0x0 0000

0x0 0001

0x0 0002

0x0 0003

……

0xF FFFF

Physical Page #

0x0004

0x0006

0x000C

0x000D

……

0x00FF

0x0 0000

0x0 0001

0x0 0002

0x0 0003

……

0xF FFFF

Program 1 Page Table

Program 2 Page Table

Quincy Flint

Making VM Fast

Quincy Flint

Quiz: Memory Access under VM

Q: Which of the following occur for each
memory access under Virtual Memory?
Select all that apply…

I. Translate the address
II. Load data from disk
III. Update the cache
IV. Reference the Page Table
V. Update the Page Table
VI. Access data in RAM

Quincy Flint

Quiz: Memory Access under VM

Q: Which of the following occur for each
memory access under Virtual Memory?
Select all that apply…

I. Translate the address
II. Load data from disk
III. Update the cache
IV. Reference the Page Table
V. Update the Page Table
VI. Access data in RAM

A:

I. Translate the address
IV. Reference the Page Table
VI. Access data in RAM

The others can occur, but do not
happen on every memory access.

Quincy Flint

Making Virtual Memory Fast

• Virtual Memory solves our 3 memory problems
• “unlimited” memory, data fragmentation, data corruption

• Virtual Memory is very costly
• Each memory access must be translated using the Page Table before fetching

• We need to make the Page Table look-up very fast
• If not, VM is not tenable…
• Cannot do this in software (this adds 5-10 instruction)
• Must do this in hardware… use another layer of cache

Quincy Flint

Making Virtual Memory Fast

• Virtual Memory solves our 3 memory problems
• “unlimited” memory, data fragmentation, data corruption

• Virtual Memory is very costly
• Each memory access must be translated using the Page Table before fetching

• We need to make the Page Table look-up very fast
• If not, VM is not tenable…
• Cannot do this in software (this adds 5-10 instruction)
• Must do this in hardware… use another layer of cache

Quincy Flint

Making Virtual Memory Fast

• Virtual Memory solves our 3 memory problems
• “unlimited” memory, data fragmentation, data corruption

• Virtual Memory is very costly
• Each memory access must be translated using the Page Table before fetching

• We need to make the Page Table look-up very fast
• If not, VM is not tenable…
• Cannot do this in software (this adds 5-10 instruction)
• Must do this in hardware… use another layer of cache

Quincy Flint

Making Virtual Memory Fast

• Virtual Memory solves our 3 memory problems
• “unlimited” memory, data fragmentation, data corruption

• Virtual Memory is very costly
• Each memory access must be translated using the Page Table before fetching

• We need to make the Page Table look-up very fast
• If not, VM is not tenable…
• Cannot do this in software (this adds 5-10 instruction)
• Must do this in hardware… use another layer of cache

Quincy Flint

Making Virtual Memory Fast

• Virtual Memory solves our 3 memory problems
• “unlimited” memory, data fragmentation, data corruption

• Virtual Memory is very costly
• Each memory access must be translated using the Page Table before fetching

• We need to make the Page Table look-up very fast
• If not, VM is not tenable…
• Cannot do this in software (this adds 10’s of instructions)
• Must do this in hardware… use another layer of cache

Quincy Flint

Making Virtual Memory Fast

• Virtual Memory solves our 3 memory problems
• “unlimited” memory, data fragmentation, data corruption

• Virtual Memory is very costly
• Each memory access must be translated using the Page Table before fetching

• We need to make the Page Table look-up very fast
• If not, VM is not tenable…
• Cannot do this in software (this adds 10’s of instructions)
• Must do this in hardware… use another layer of cache

Quincy Flint

Making Virtual Memory Fast: TLB

• Translation Lookaside Buffer (TLB): special page table cache to make VM fast

Quincy Flint

Making Virtual Memory Fast: TLB

• Translation Lookaside Buffer (TLB): special page table cache to make VM fast

Processor

Memory

Page
Table
(4 MB)

Quincy Flint

Making Virtual Memory Fast: TLB

• Translation Lookaside Buffer (TLB): special page table cache to make VM fast

Processor

Memory

Page
Table
(4 MB)

VA

Quincy Flint

Making Virtual Memory Fast: TLB

• Translation Lookaside Buffer (TLB): special page table cache to make VM fast

Processor

Memory

Page
Table
(4 MB)

VA PA

Quincy Flint

Making Virtual Memory Fast: TLB

• Translation Lookaside Buffer (TLB): special page table cache to make VM fast

Processor

Memory

Page
Table
(4 MB)

VA PA

1 million
entries

VA

Quincy Flint

Making Virtual Memory Fast: TLB

• Translation Lookaside Buffer (TLB): special page table cache to make VM fast

Processor

Memory

Page
Table
(4 MB)

VA PA

1 million
entries

PAVA

Quincy Flint

Making Virtual Memory Fast: TLB

• Translation Lookaside Buffer (TLB): special page table cache to make VM fast

Processor

Memory

Page
Table
(4 MB)

VA PA

1 million
entries

PAVA

Quincy Flint

Making Virtual Memory Fast: TLB

• Translation Lookaside Buffer (TLB): special page table cache to make VM fast

Processor

Memory

Page
Table
(4 MB)

VA PA

1 million
entries

PAVA

Quincy Flint

Making Virtual Memory Fast: TLB

• Translation Lookaside Buffer (TLB): special page table cache to make VM fast

Processor

Memory

Page
Table
(4 MB)

VA PA

1 million
entries

PAVA

Quincy Flint

Making Virtual Memory Fast: TLB

• Translation Lookaside Buffer (TLB): special page table cache to make VM fast

Processor

Memory

Page
Table
(4 MB)

VA PA

1 million
entries

Quincy Flint

Making Virtual Memory Fast: TLB

• Translation Lookaside Buffer (TLB): special page table cache to make VM fast

Processor

Memory

Page
Table
(4 MB)

VA PA
TLB

1 million
entries

Quincy Flint

Making Virtual Memory Fast: TLB

• Translation Lookaside Buffer (TLB): special page table cache to make VM fast

Processor

Memory

Page
Table
(4 MB)

VA PA
TLB

1 million
entries

Quincy Flint

Making Virtual Memory Fast: TLB

• Translation Lookaside Buffer (TLB): special page table cache to make VM fast
• Fast: less than 1 cycle access time

Processor

Memory

Page
Table
(4 MB)

VA PA
TLB

Fast!

1 million
entries

Quincy Flint

Making Virtual Memory Fast: TLB

• Translation Lookaside Buffer (TLB): special page table cache to make VM fast
• Fast: less than 1 cycle access time

• Small: only stores a few Page Table Entries

Processor

Memory

Page
Table
(4 MB)

VA PA
TLB

Fast!

1 million
entries

Quincy Flint

Making Virtual Memory Fast: TLB

• Translation Lookaside Buffer (TLB): special page table cache to make VM fast
• Fast: less than 1 cycle access time

• Small: only stores a few Page Table Entries

• To be fast, the TLB must be small

Processor

Memory

Page
Table
(4 MB)

TLB
VA PA

Fast!

1 million
entries

Quincy Flint

Making Virtual Memory Fast: TLB

• Translation Lookaside Buffer (TLB): special page table cache to make VM fast
• Fast: less than 1 cycle access time

• Small: only stores a few Page Table Entries

• To be fast, the TLB must be small
• Separate TLBs for instructions and data

Processor

Memory

Page
Table
(4 MB)

TLB
VA PA

Fast!

1 million
entries

1 million
entries

Quincy Flint

Making Virtual Memory Fast: TLB

• Translation Lookaside Buffer (TLB): special page table cache to make VM fast
• Fast: less than 1 cycle access time

• Small: only stores a few Page Table Entries

• To be fast, the TLB must be small
• Separate TLBs for instructions and data

• 4 kB Pages: 64 entries, 4-way set associative

Processor

Memory

Page
Table
(4 MB)

TLB
VA PA

Fast!

1 million
entries

1 million
entries

Quincy Flint

Making Virtual Memory Fast: TLB

• Translation Lookaside Buffer (TLB): special page table cache to make VM fast
• Fast: less than 1 cycle access time

• Small: only stores a few Page Table Entries

• To be fast, the TLB must be small
• Separate TLBs for instructions and data

• 4 kB Pages: 64 entries, 4-way set associative

• 2 MB Pages: 32 entries, 4-way set associative

Processor

Memory

Page
Table
(4 MB)

TLB
VA PA

Fast!

1 million
entries

10’s of
entries

Quincy Flint

Making Virtual Memory Fast: TLB

• Translation Lookaside Buffer (TLB): special page table cache to make VM fast
• Fast: less than 1 cycle access time

• Small: only stores a few Page Table Entries

• To be fast, the TLB must be small
• Separate TLBs for instructions and data

• 4 kB Pages: 64 entries, 4-way set associative

• 2 MB Pages: 32 entries, 4-way set associative

Page Table has 1 million entry,
TLB only has 10’s of entries??

Each Page maps 4k addresses,
exploit principal of locality!

Processor

Memory

Page
Table
(4 MB)

TLB
VA PA

1 million
entries

10’s of
entries

Quincy Flint

What happens when we access memory?

• Page is in RAM [Good]
• Page Table Entry in the TLB

• Best performance

• Page Table Entry not in the TLB
• Poor performance

• Page is not in RAM [Bad]
• Page Table Entry in the TLB

• Very poor performance

• Page Table Entry not in the TLB
• Worst performance

Processor

Memory

Page
Table
(4 MB)

TLB
VA PA

Quincy Flint

What happens when we access memory?

• Page is in RAM [Good]
• Page Table Entry in the TLB

• Best performance

• Page Table Entry not in the TLB
• Poor performance

• Page is not in RAM [Bad]
• Page Table Entry in the TLB

• Very poor performance

• Page Table Entry not in the TLB
• Worst performance

Processor

Memory

Page
Table
(4 MB)

TLB
VA PA

Quincy Flint

What happens when we access memory?

• Page is in RAM [Good]
• Page Table Entry in the TLB

• Best performance

• Page Table Entry not in the TLB
• Poor performance

• Page is not in RAM [Bad]
• Page Table Entry in the TLB

• Very poor performance

• Page Table Entry not in the TLB
• Worst performance

Processor

Memory

Page
Table
(4 MB)

TLB
VA PA

Quincy Flint

What happens when we access memory?

• Page is in RAM [Good]
• Page Table Entry in the TLB

• Best performance

• Page Table Entry not in the TLB
• Poor performance

• Page is not in RAM [Bad]
• Page Table Entry in the TLB

• Very poor performance

• Page Table Entry not in the TLB
• Worst performance

Processor

Memory

Page
Table
(4 MB)

TLB
VA PA

Quincy Flint

What happens when we access memory?

• Page is in RAM [Good]
• Page Table Entry in the TLB

• Best performance

• Page Table Entry not in the TLB
• Poor performance

• Page is not in RAM [Bad]
• Page Table Entry in the TLB

• Very poor performance

• Page Table Entry not in the TLB
• Worst performance

Processor

Memory

Page
Table
(4 MB)

TLB
VA PA

~ 1 cycle to translate,
then can go to RAM

Quincy Flint

What happens when we access memory?

• Page is in RAM [Good]
• Page Table Entry in the TLB

• Best performance

• Page Table Entry not in the TLB
• Poor performance

• Page is not in RAM [Bad]
• Page Table Entry in the TLB

• Very poor performance

• Page Table Entry not in the TLB
• Worst performance

Processor

Memory

Page
Table
(4 MB)

TLB
VA PA

~ 1 cycle to translate,
then can go to RAM

Quincy Flint

What happens when we access memory?

• Page is in RAM [Good]
• Page Table Entry in the TLB

• Best performance

• Page Table Entry not in the TLB
• Poor performance

• Page is not in RAM [Bad]
• Page Table Entry in the TLB

• Very poor performance

• Page Table Entry not in the TLB
• Worst performance

Processor

Memory

Page
Table
(4 MB)

TLB
VA PA

~ 1 cycle to translate,
then can go to RAM

~1,000 cycles to load PTE to
TLB, then can go to RAM

Quincy Flint

What happens when we access memory?

• Page is in RAM [Good]
• Page Table Entry in the TLB

• Best performance

• Page Table Entry not in the TLB
• Poor performance

• Page is not in RAM [Bad]
• Page Table Entry in the TLB

• Very poor performance

• Page Table Entry not in the TLB
• Worst performance

Processor

Memory

Page
Table
(4 MB)

TLB
VA PA

~ 1 cycle to translate,
then can go to RAM

~1,000 cycles to load PTE to
TLB, then can go to RAM

Quincy Flint

What happens when we access memory?

• Page is in RAM [Good]
• Page Table Entry in the TLB

• Best performance

• Page Table Entry not in the TLB
• Poor performance

• Page is not in RAM [Bad]
• Page Table Entry in the TLB

• Very poor performance

• Page Table Entry not in the TLB
• Worst performance

Processor

Memory

Page
Table
(4 MB)

TLB
VA PA

~ 1 cycle to translate,
then can go to RAM

~1,000 cycles to load PTE to
TLB, then can go to RAM

1 cycle to know data is on disk,
then ~80 million cycles to get it

Quincy Flint

What happens when we access memory?

• Page is in RAM [Good]
• Page Table Entry in the TLB

• Best performance

• Page Table Entry not in the TLB
• Poor performance

• Page is not in RAM [Bad]
• Page Table Entry in the TLB

• Very poor performance

• Page Table Entry not in the TLB
• Worst performance

Processor

Memory

Page
Table
(4 MB)

TLB
VA PA

~ 1 cycle to translate,
then can go to RAM

~1,000 cycles to load PTE to
TLB, then can go to RAM

1 cycle to know data is on disk,
then ~80 million cycles to get it

Quincy Flint

What happens when we access memory?

• Page is in RAM [Good]
• Page Table Entry in the TLB

• Best performance

• Page Table Entry not in the TLB
• Poor performance

• Page is not in RAM [Bad]
• Page Table Entry in the TLB

• Very poor performance

• Page Table Entry not in the TLB
• Worst performance

Processor

Memory

Page
Table
(4 MB)

TLB
VA PA

~ 1 cycle to translate,
then can go to RAM

~1,000 cycles to load PTE to
TLB, then can go to RAM

1 cycle to know data is on disk,
then ~80 million cycles to get it

~1,000 cycles to know data is on
disk, then~80 million cycles to get it

Quincy Flint

Illustration from the textbookQuincy Flint

How do we make the TLB seem larger?

Processor

Memory

Page
Table
(4 MB)

TLB
VA PA

Q: How can we make the TLB appear larger without
reducing performance?

I. Store more PTEs in the TLB
II. Increase page size
III. Add another TLB level
IV. Have HW manage TLB misses, not O/S
V. Decrease page size

Quincy Flint

How do we make the TLB seem larger?

Processor

Memory

Page
Table
(4 MB)

TLB
VA PA

Q: How can we make the TLB appear larger without
reducing performance?

I. Store more PTEs in the TLB
II. Increase page size
III. Add another TLB level
IV. Have HW manage TLB misses, not O/S
V. Decrease page size

A:
II. Increase page size
We can reduce the number of TLB misses by using larger page tables.
We can address more memory with the same number of PTEs.

III. Add another TLB level
Add 2nd-level TLB that is larger, but slower.

IV. Have HW manage TLB misses.
Hardware can do a page table walk to replace a page in the TLB.

Quincy Flint

How do we make the TLB seem larger?

Processor

Memory

Page
Table
(4 MB)

TLB
VA PA

Q: How can we make the TLB appear larger without
reducing performance?

I. Store more PTEs in the TLB
II. Increase page size
III. Add another TLB level
IV. Have HW manage TLB misses, not O/S
V. Decrease page size

A:
II. Increase page size
We can reduce the number of TLB misses by using larger page tables.
We can address more memory with the same number of PTEs.

III. Add another TLB level
Add 2nd-level TLB that is larger, but slower.

IV. Have HW manage TLB misses.
Hardware can do a page table walk to replace a page in the TLB.

64 4kB pages = 256kB of data
32 2MB pages = 64 MB of data

Quincy Flint

How do we make the TLB seem larger?

Processor

Memory

Page
Table
(4 MB)

TLB
VA PA

Q: How can we make the TLB appear larger without
reducing performance?

I. Store more PTEs in the TLB
II. Increase page size
III. Add another TLB level
IV. Have HW manage TLB misses, not O/S
V. Decrease page size

A:
II. Increase page size
We can reduce the number of TLB misses by using larger page tables.
We can address more memory with the same number of PTEs.

III. Add another TLB level
Add 2nd-level TLB that is larger, but slower.

IV. Have HW manage TLB misses.
Hardware can do a page table walk to replace a page in the TLB.

64 4kB pages = 256kB of data
32 2MB pages = 64 MB of data

Quincy Flint

How do we make the TLB seem larger?

Processor

Memory

Page
Table
(4 MB)

TLB
VA PA

Q: How can we make the TLB appear larger without
reducing performance?

I. Store more PTEs in the TLB
II. Increase page size
III. Add another TLB level
IV. Have HW manage TLB misses, not O/S
V. Decrease page size

A:
II. Increase page size
We can reduce the number of TLB misses by using larger page tables.
We can address more memory with the same number of PTEs.

III. Add another TLB level
Add 2nd-level TLB that is larger, but slower.

IV. Have HW manage TLB misses.
Hardware can do a page table walk to replace a page in the TLB.

64 4kB pages = 256kB of data
32 2MB pages = 64 MB of data

Quincy Flint

How do we make the TLB seem larger?

Processor

Memory

Page
Table
(4 MB)

TLB
VA PA

Q: How can we make the TLB appear larger without
reducing performance?

I. Store more PTEs in the TLB
II. Increase page size
III. Add another TLB level
IV. Have HW manage TLB misses, not O/S
V. Decrease page size

A:
II. Increase page size
We can reduce the number of TLB misses by using larger page tables.
We can address more memory with the same number of PTEs.

III. Add another TLB level
Add 2nd-level TLB that is larger, but slower.

IV. Have HW manage TLB misses.
Hardware can do a page table walk to replace a page in the TLB.

TLB2
64 4kB pages = 256kB of data
32 2MB pages = 64 MB of data

Quincy Flint

How do we make the TLB seem larger?

Processor

Memory

Page
Table
(4 MB)

TLB
VA PA

Q: How can we make the TLB appear larger without
reducing performance?

I. Store more PTEs in the TLB
II. Increase page size
III. Add another TLB level
IV. Have HW manage TLB misses, not O/S
V. Decrease page size

A:
II. Increase page size
We can reduce the number of TLB misses by using larger page tables.
We can address more memory with the same number of PTEs.

III. Add another TLB level
Add 2nd-level TLB that is larger, but slower.

IV. Have HW manage TLB misses.
Hardware can do a page table walk to replace a page in the TLB.

TLB2
64 4kB pages = 256kB of data
32 2MB pages = 64 MB of data

Quincy Flint

How do we make the TLB seem larger?

Processor

Memory

Page
Table
(4 MB)

TLB
VA PA

Q: How can we make the TLB appear larger without
reducing performance?

I. Store more PTEs in the TLB
II. Increase page size
III. Add another TLB level
IV. Have HW manage TLB misses, not O/S
V. Decrease page size

A:
II. Increase page size
We can reduce the number of TLB misses by using larger page tables.
We can address more memory with the same number of PTEs.

III. Add another TLB level
Add 2nd-level TLB that is larger, but slower.

IV. Have HW manage TLB misses.
Hardware can do a page table walk to replace a page in the TLB.

TLB2
64 4kB pages = 256kB of data
32 2MB pages = 64 MB of data

Quincy Flint

How do we make the TLB seem larger?

Processor

Memory

Page
Table
(4 MB)

TLB
VA PA

Q: How can we make the TLB appear larger without
reducing performance?

I. Store more PTEs in the TLB
II. Increase page size
III. Add another TLB level
IV. Have HW manage TLB misses, not O/S
V. Decrease page size

A:
II. Increase page size
We can reduce the number of TLB misses by using larger page tables.
We can address more memory with the same number of PTEs.

III. Add another TLB level
Add 2nd-level TLB that is larger, but slower.

IV. Have HW manage TLB misses.
Hardware can do a page table walk to replace a page in the TLB.

TLB2
64 4kB pages = 256kB of data
32 2MB pages = 64 MB of data

Quincy Flint

How do we make the TLB seem larger?

Processor

Memory

Page
Table
(4 MB)

TLB
VA PA

Q: How can we make the TLB appear larger without
reducing performance?

I. Store more PTEs in the TLB
II. Increase page size
III. Add another TLB level
IV. Have HW manage TLB misses, not O/S
V. Decrease page size

A:
II. Increase page size
We can reduce the number of TLB misses by using larger page tables.
We can address more memory with the same number of PTEs.

III. Add another TLB level
Add 2nd-level TLB that is larger, but slower.

IV. Have HW manage TLB misses.
Hardware can do a page table walk to replace a page in the TLB.

TLB2
64 4kB pages = 256kB of data
32 2MB pages = 64 MB of data

Quincy Flint

How do we make the TLB seem larger?

Processor

Memory

Page
Table
(4 MB)

TLB
VA PA

Q: How can we make the TLB appear larger without
reducing performance?

I. Store more PTEs in the TLB
II. Increase page size
III. Add another TLB level
IV. Have HW manage TLB misses, not O/S
V. Decrease page size

A:
II. Increase page size
We can reduce the number of TLB misses by using larger page tables.
We can address more memory with the same number of PTEs.

III. Add another TLB level
Add 2nd-level TLB that is larger, but slower.

IV. Have HW manage TLB misses.
Hardware can do a page table walk to replace a page in the TLB.

TLB2
64 4kB pages = 256kB of data
32 2MB pages = 64 MB of data

Quincy Flint

How do we make the TLB seem larger?

Processor

Memory

Page
Table
(4 MB)

TLB
VA PA

Q: How can we make the TLB appear larger without
reducing performance?

I. Store more PTEs in the TLB
II. Increase page size
III. Add another TLB level
IV. Have HW manage TLB misses, not O/S
V. Decrease page size

A:
II. Increase page size
We can reduce the number of TLB misses by using larger page tables.
We can address more memory with the same number of PTEs.

III. Add another TLB level
Add 2nd-level TLB that is larger, but slower.

IV. Have HW manage TLB misses.
Hardware can do a page table walk to replace a page in the TLB.

TLB2
64 4kB pages = 256kB of data
32 2MB pages = 64 MB of data

Quincy Flint

Quincy Flint

Quincy Flint

References

• David Black-Schaffer: Lecture Series on Virtual Memory

• Patterson, Hennessy: Computer Organization and Design: the
Hardware/Software Interface

• Intel Hardware Data-Sheets

• Linux: Anatomy of a Program in Memory

Quincy Flint

